Нечеткая логика в системах управления

Оглавление

Нечеткая логика в системах управления. 3

Немного теории. 3

Фаззификация (переход к нечеткости) 5

Лингвистические переменные. 6

Функции принадлежности. 6

Разработка нечетких правил. 7

Дефаззификация (устранение нечеткости) 8

Метод центра максимума (СоМ) 9

Метод наибольшего значения (МоМ) 9

Метод центроида (СоА) 9

Описание системы 10

Off-line-оптимизация. 11

On-line-оптимизация. 11

Реализация. 11

Литература. 13

Нечеткая логика в системах управления

В последнее время нечеткая технология завоевывает все больше сторонников среди разработчиков систем управления. Взяв старт в 1965 году из работ профессора Лотфи Заде [1], за прошедшее время нечеткая логика прошла путь от почти антинаучной теории, практически отвергнутой в Европе и США, до банальной ситуации конца девяностых годов, когда в Японии в широком ассортименте появились «нечеткие» бритвы, пылесосы, фотокамеры [4, 10]. Сам термин «fuzzy» так прочно вошел в жизнь, что на многих языках он даже не переводится. В России в качестве примера можно вспомнить рекламу стиральных машин и микроволновых печей фирмы Samsung, обладающих искусственным интеллектом на основе нечеткой логики. Тем не менее, столь масштабный скачок в развитии нечетких систем управления не случаен. Простота и дешевизна их разработки заставляет проектировщиков все чаще прибегать к этой технологии. Бурный рост рынка нечетких систем Рис. 1. Рост затрат на исследования по нечетким системам (млн. долл.).показан на рис. 1. После поистине взрывного старта прикладных нечетких систем в Японии [2, 3, 5, 6] многие разработчики США и Европы наконец-то обратили внимание на эту технологию. Но время было упущено, и мировым лидером в области нечетких систем стала Страна восходящего солнца [7, 8], где к концу 1980-х годов был налажен выпуск специализированных нечетких контроллеров, выполненных по технологии СБИС [9]. В такой ситуации Intel нашла поистине гениальное решение. Имея большое количество разнообразных контроллеров от MCS-51 до MCS-96, которые на протяжении многих лет успешно использовались во многих приложениях, корпорация решила создать средство разработки приложений на базе этих контроллеров, но с использованием технологии нечеткости. Это позволило избежать значительных затрат на конструирование собственных нечетких контроллеров, а система от Intel, получившая название fuzzy TECH, завоевала огромную популярность не только в США и Европе, но и прорвалась на японский рынок.

Немного теории

Нечеткая логика основана на использовании таких оборотов естественного языка, как «далеко», «близко», «холодно», «горячо». Диапазон ее применения очень широк - от бытовых приборов до управления сложными промышленными процессами. Многие современные задачи управления просто не могут быть решены классическими методами из-за очень большой сложности математических моделей, их описывающих. Вместе с тем, чтобы использовать теорию нечеткости на цифровых компьютерах, необходимы математические преобразования, позволяющие перейти от лингвистических переменных к их числовым аналогам в ЭВМ.

Рис. 2.

На рис. 2 показаны области наиболее эффективного применения современных технологий управления. Как видно, классические методы управления хорошо работают при полностью детерминированном объекте управления и детерминированной среде, а для систем с неполной информацией и высокой сложностью объекта управления оптимальными являются нечеткие методы управления. (В правом верхнем углу рисунка приведена еще одна современная технология управления - с применением искусственных нейронных сетей, но мы не станем столь глубоко вдаваться в достижения ученых.)

Перейти на страницу номер:
 1  2  3  4  5  6  7