Нечеткая логика в системах управления

Шаг 3. После определения экстремальных значений нужно определить промежуточные значения. Для них выбираются П- или Л-функции из числа стандартных функций принадлежности.

Шаг 4. Для значений, соответствующих экстремальным значениям параметра, выбираются S- или Z-функции принадлежности.

Если удалось подобным образом описать стоящую перед вами задачу, вы уже целиком погрузились в мир нечеткости. Теперь необходимо что-то, что поможет найти верный путь в этом лабиринте. Таким путеводителем вполне может стать база нечетких правил. О методах их составления мы поговорим ниже.

Разработка нечетких правил

На этом этапе определяются продукционные правила, связывающие лингвистические переменные. Совокупность таких правил описывает стратегию управления, применяемую в данной задаче.

Большинство нечетких систем используют продукционные правила для описания зависимостей между лингвистическими переменными. Типичное продукционное правило состоит из антецедента (часть ЕСЛИ …) и консеквента (часть ТО …). Антецедент может содержать более одной посылки. В этом случае они объединяются посредством логических связок И или ИЛИ.

Процесс вычисления нечеткого правила называется нечетким логическим выводом и подразделяется на два этапа: обобщение и заключение.

Пусть мы имеем следующее правило:

ЕСЛИ ДИСТАНЦИЯ=средняя И

УГОЛ=малый, ТО МОЩНОСТЬ=средняя.

Обратимся к примеру с контейнерным краном и рассмотрим ситуацию, когда расстояние до платформы равно 20 метрам, а угол отклонения контейнера на тросе крана равен четырем градусам. После фаззификации исходных данных получим, что степень принадлежности расстояния в 20 метров к терму СРЕДНЯЯ лингвистической переменной ДИСТАНЦИЯ равна 0,9, а степень принадлежности угла в 4 градуса к терму МАЛЫЙ лингвистической переменной УГОЛ равна 0,8.

На первом шаге логического вывода необходимо определить степень принадлежности всего антецедента правила. Для этого в нечеткой логике существуют два оператора: MIN(…) и MAX(…). Первый вычисляет минимальное значение степени принадлежности, а второй - максимальное значение. Когда применять тот или иной оператор, зависит от того, какой связкой соединены посылки в правиле. Если использована связка И, применяется оператор MIN(…). Если же посылки объединены связкой ИЛИ, необходимо применить оператор MAX(…). Ну а если в правиле всего одна посылка, операторы вовсе не нужны. Для нашего примера применим оператор MIN(…), так как использована связка И. Получим следующее:

MIN(0,9;0,8)=0,8.

Следовательно, степень принадлежности антецедента такого правила равна 0,8. Операция, описанная выше, отрабатывается для каждого правила в базе нечетких правил.

Следующим шагом является собственно вывод или заключение. Подобным же образом посредством операторов MIN/MAX вычисляется значение консеквента. Исходными данными служат вычисленные на предыдущем шаге значения степеней принадлежности антецедентов правил.

После выполнения всех шагов нечеткого вывода мы находим нечеткое значение управляющей переменной. Чтобы исполнительное устройство смогло отработать полученную команду, необходим этап управления, на котором мы избавляемся от нечеткости и который называется дефаззификацией.

Дефаззификация (устранение нечеткости)

На этом этапе осуществляется переход от нечетких значений величин к определенным физическим параметрам, которые могут служить командами исполнительному устройству.

Результат нечеткого вывода, конечно же, будет нечетким. В примере с краном команда для электромотора крана будет представлена термом СРЕДНЯЯ (мощность), но для исполнительного устройства это ровно ничего не значит.

Для устранения нечеткости окончательного результата существует несколько методов. Рассмотрим некоторые из них. Аббревиатура, стоящая после названия метода, происходит от сокращения его английского эквивалента.

Метод центра максимума (СоМ)

Перейти на страницу номер:
 1  2  3  4  5  6  7